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Abstract. We consider the adsorption of a random heteropolymer onto an interface within the model of
Garel et al. [1] by taking into account random self-interactions and ternary repulsive interactions between
the monomers. Within the replica trick and by using a self-consistent preaveraging procedure we map the
adsorption problem onto the problem of binding state of a quantum mechanical Hamiltonian. The analysis
of the latter is treated within the variational method based on the 2nd Legendre transform. Our study
reveals a complex behaviour of the localization of the heteropolymer. In particular, we predict a reentrant
localization transition for moderate values of the asymmetry of the distribution function of the monomer
sequences along the heteropolymer.

PACS. 05.70.Np Interface and surface thermodynamics – 61.41.+e Polymers, elastomers, and plastics –
64.70.-p Specific phase transitions

1 Introduction

The behaviour of heteropolymers at interfaces between
two immiscible (incompatible) solvents has been inten-
sively studied in recent years [1–16] since it has an obvious
importance in biological applications (proteins and mem-
branes) [17] and application in different fields of industry
such as biosensors, pattern recognition applications, glues,
paints etc. [18]. Experiments [19,20] and numerical sim-
ulations [21,22] have shown that a random heteropoly-
mer may localize, reinforcing the interface between two
incompatible solvents and reduces interfacial tension. Re-
cent theoretical efforts have been devoted to understand
the fundamental physical mechanism governing the local-
ization of a random copolymer onto an interface [5–15].

In the simple model introduced by Garel et al. [1] only
the interaction of the monomers with the solvent, but not
the self-interactions between the monomers were taken
into account. In the case of a A−B copolymer at the A−B
interface A monomers prefer to be in the A-half-plane
while B monomers prefer to be in the B-half-plane.
Obviously there is a sort of frustration in such system
because the complete separation of A monomers into one-
half plane and B monomers into another half plane is for-
bidden by polymer bonds. The analysis performed in [1]
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showed that the localized state of a random heteropolymer
chain in the presence of a selective interface can be imag-
ined as consisting of blobs with majority of A monomers
and minority of B monomers in the A-half-plane and
vice versa for the blobs in the B-half-plane. It was shown
that random copolymer always localizes for statistically
symmetric heteropolymer, whereas a delocalization tran-
sition was found if the heteropolymer is asymmetric.

The heterogeneity in the chemical structure of the
polymer, which causes random self-interactions between
the monomers, may have a considerable impact on their
bulk thermodynamic behavior [23], which consists in
a segregation into A-rich and B-rich domains. In the
case of a single heteropolymer in a solvent the ran-
dom self-interactions favor the collapse of the heteropoly-
mer [24,25]. The self-interactions between monomers may
play an important role for adsorption as it was no-
ticed in [4–26]. However, the influence of random self-
interactions on the localization behavior of the random
heteropolymer is poorly understood. The effect of the ex-
cluded volume in the adsorption of a heteropolymer was
recently investigated in [27]. In the present paper we will
consider the influence of the binary random monomer-
monomer interactions and ternary repulsive interactions
on the localization behavior of a random heteropolymer
onto an interface.

The article is organized as follows. Section 2 introduces
the model and the formalism. In Section 3 we present our
results. Section 4 contains the conclusions.
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2 Model and formalism

We study the problem of a random heteropolymer by us-
ing the model proposed in [1]. Let us consider a long two-
letter A − B heteropolymer chain in the presence of the
A′ − B′ interface between two incompatible solvents. Al-
ternation of different type of monomers along the chain
is assumed to be random, and each monomer is assumed
to interact with an external potential, which takes posi-
tive and negative values depending on the position of the
monomer with respect to the interface. The partition func-
tion of the polymer in the presence of the interface is given
by the following Edwards functional integral [28] over the
trajectories r(s) (0 ≤ s ≤ N) of the polymer chain

Z{ζ(s)} =
∫
Dr(s) exp

{
− d

2a2

∫ N

0

ds
(
∂r
∂s

)2

+w
∫ N

0

ds ζ(s)sgn[z(s)] + χ0

∫ N

0

ds

×
∫ N

0

ds′ ζ(s)ζ(s′)δ (r(s)− r(s′))

−λ
∫ N

0

ds
∫ N

0

ds′
∫ N

0

ds′′δ
(
r(s)

−r(s′)
)
δ (r(s′)− r(s′′))

}
, (1)

where a is the Kuhnian segment length, z(s) is the Carte-
sian component of r(s) in d-dimensions transversal to the
interface, w, χ0, and λ are measured in units of kBT . The
first term in the exponential of (1) corresponds to the elas-
tic energy of the polymer chain, the second one describes
the monomer interaction with the medium, which is gov-
erned by the random parameter ζ(s), which is assumed to
be Gaussian distributed with the distribution function

P ({ζ(s)}) ∝ exp

[
− 1

2∆0

∫ N

0

(ζ(s)− ζ0)2 ds

]
. (2)

The distribution function (2) of the random “charges” ζ(s)
is completely characterized by its two moments, 〈ζ(s)〉 =
ζ0 with ζ0 being related to the asymmetry in the composi-
tion of the copolymer, and 〈ζ(s)ζ(s′)〉 = ζ2

0 +∆0δ(s− s′),
where ∆0 being the variance of the distribution. The
choice of the interaction potential as a step function is
legitimate, if the interface width is much smaller than
the size of an average excursion loop. For positive w the
monomers with ζ(s) > 0 favor the right half-plane. The
third term in the exponential of equation (1) describes
the short-range random interactions between monomers,
where χ0 is the effective interaction potential (the sec-
ond virial coefficient). The sign of this term in (1) is cho-
sen such that for χ0 > 0 the like monomers attract each
other while the unlike monomers repel each other. The
last term in equation (1) corresponds to ternary repul-
sive interactions, which prevents the heteropolymer from

the collapse due to attractive binary self-interactions. The
model described by equation (1) admits that the ran-
dom self-interactions occur independent of whether the
monomers are on the left or on the right side of the in-
terface. This may be the case if even the favorable solvent
for a given type of monomer is slightly poor. If the favor-
able solvent is comprised of the same monomers, then the
self-interactions between the like monomers in their own
medium are expected to be zero. The generalization of the
model where the self-interactions are switched off, if they
are in their own medium is possible, but is not so simple.

The random “charges” ζ(s) in (1) are considered as
quenched variables, so that in order to obtain the free
energy one has to average ln(Z) over all possible realiza-
tions of monomer sequences. For this purpose we use the
replica trick consisting in introduction of n copies of the
system with the same quenched variables ζ(s), and using
the identity ln(Z) = limn→0(Zn − 1)/n in averaging over
ζ(s). Thus, at the intermediate stage we consider the av-
erage 〈Zn〉 where 〈...〉 means average with the distribution
function (2). The partition function Zn can be written as

Zn =
∫ n∏

α=1

Drα(s) exp {−H0 −Hint} , (3)

where

H0 =
d

2a2

∫ N

0

ds
n∑
α=1

(
∂rα
∂s

)2

, (4)

Hint = −w
∫ N

0

ds ζ(s)
n∑
α=1

sgn[zα(s)]

−χ0

∫ N

0

ds
∫ N

0

ds′ ζ(s)ζ(s′)
n∑
α=1

δ (rα(s)− rα(s′))

+λ
∫ N

0

ds
∫ N

0

ds′
∫ N

0

ds′′
n∑
α=1

δ (rα(s)− rα(s′))

×δ (rα(s′)− rα(s′′)) . (5)

To average over ζ(s) in (3) we expand (3) in Taylor
series in powers of Hint, carry out the average, and re-
exponentiate the obtained expression. This allows us to
write the result of the average in the exponential as

ln (〈exp {−Hint}〉) = −〈Hint〉

+
1
2

(〈
H2
int

〉
− 〈Hint〉2 + ...

)
. (6)

Restricting the expansion in (6) to quadratic terms inHint

we obtain

〈Zn〉 =
∫ n∏

α=1

Drα(s) exp

{
−
∫ N

0

Ln ds

}
, (7)
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with

Ln =
d

2a2

n∑
α=1

(
∂rα(s)
∂s

)2

− wζ0

n∑
α=1

sgn(zα(s))

− 1
2
w2∆0

n∑
α,β=1

sgn(zα(s))sgn(zβ(s))− 2wχ0ζ0∆0

×
n∑

α,β=1

sgn(zα(s))
∫ N

0

δ (rβ(s)− rβ(s′)) ds′

− χ0ζ
2
0

n∑
α=1

∫ N

0

δ (rα(s)− rα(s′)) ds′ − 2χ2
0ζ

2
0∆0

×
n∑

α,β=1

∫ N

0

ds′
∫ N

0

ds′′δ (rα(s)− rα(s′))

× δ (rβ(s)− rβ(s′′))− χ2
0∆

2
0

n∑
α6=β

∫ N

0

δ (rα(s)− rα(s′))

× δ (rβ(s)− rβ(s′)) ds′ − χ2
0∆

2
0

ad

n∑
α=1

∫ N

0

δ (rα(s)

−rα(s′)) ds′ + λ
n∑
α=1

∫ N

0

ds′
∫ N

0

ds′′δ (rα(s)

−rα(s′)) δ (rα(s′)− rα(s′′)) . (8)

Notice that we have considered the term proportional to
χ2

0∆
2
0 for α 6= β and α = β separately. For α = β there

appears the term δ(0), which becomes finite, δ(0) ' a−d,
by using the Kuhnian length a as a microscopic cutoff.

Notice that Ln contains more than one integration over
the contour length. Due to this it is not possible to reduce
Ln to a quantum mechanical Hamiltonian as it is the case,
if only a single integration over the contour length appears
(see for example [5]).

In the following we will preaverage Ln over the
transversal and longitudinal coordinates zα(s) and rqα(s)
appearing in (8) under the integrals over the contour
length. This will reduce (8) to a quantum mechanical
Hamiltonian. The idea is as following. First we will sep-
arate the delta functions in equation (8) in in-plane and
in transversal components: δ(r) = δ(rq)δ(z). The preaver-
aging over the transversal coordinates will be performed
by using the transversal Green’s function G(z,N ; z′, 0),
which we represent as series over the eigenfunctions
ψk(z) as

G(z, z′;N) =
∑
k

e−Nεkψk(z)ψ∗k(z′). (9)

The Green’s function G(z, z′;N) satisfies for N > 0 the
differential equation

− ∂G
∂N

= −a
2

2d
∂2
zG+

U(z)
T

G, (10)

which is remarkably similar to the Schrödinger equation
for a quantum particle in an external potential [28]

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + U(r)ψ.

The mapping of the latter onto equation (10) occurs by
using the following replacements: t→ iN , ~→ T , a2/T →
d/m. In the case of a discrete spectrum with the energy of
the ground state being negative, the main contribution in
the series (9) for large N originates from the ground state
(ground state dominance) [32]. In the approximation of
the ground state dominance we take into account only one
term (k = k0) in (9). Due to the use of GSD the average
over zα(s) does not affect the integration over s, so that
the preaveraging of the terms in equation (8) containing
only one delta-function gives

〈ρ(rα)〉 =
∣∣ψk0

(zα)
∣∣2 〈ρ(rqα)〉, (11)

where ρ(rqα) =
∫N

0
δ(rqα−rqα(s))ds. Preaveraging in a sim-

ilar way the terms which are bilinear in delta-functions
gives

〈ρ(rα)ρ(rβ)〉=
∣∣ψk0

(zα)
∣∣2 ∣∣ψk0

(zβ)
∣∣2 〈ρ(rqα(s))ρ(rqβ(s′′))

〉
·

(12)

The seventh term in equation (8) can be written in form
of equation (12), but due to the missing of one integra-
tion over the contour length it contains the factor 1/N ,
so that it can be neglected for large N . We now will con-
sider the preaveraging over the longitudinal coordinates
rqα(s). The fifth and the last but one term, and the last
term in equation (8) are the second and the third virial
coefficients, respectively. The balance between them pre-
vents the polymer from complete collapse. We will treat
the averages 〈ρ(rqα)〉, 〈ρ(rqα(s))ρ(rqβ(s′′))〉 on the level of
the Flory theory [34]. As it is well-known the free energy
associated with the 2nd and the 3rd virial coefficients can
be written as

F = −(χ2
0∆

2
0/a

d + χ0ζ
2
0)
N2

Rdq
+ λ

N3

R2dq
, (13)

where dq = d − 1. The extremum of F with respect to
R gives R−dq = (χ2

0∆
2
0/a

d + χ0ζ
2
0)/(2λN). This value

of R permits to estimate the average density in equa-
tion (11) as 〈ρ(rqα)〉 = (χ2

0∆
2
0/a

d + χ0ζ
2
0)/(2λ), and sim-

ilarly 〈ρ(rqα(s))ρ(rqα(s′′))〉 = ((χ2
0∆

2
0/a

d + χ0ζ
2
0)/(2λ))2.

In doing so we omit the influence of the interface on the
balance between the 2nd and 3rd virial coefficient. This
is legitimate to the lowest order we are considering in the
present work.
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Carrying out the preaveraging in (8) by using equa-
tions (11, 12) gives the effective replica Hamiltonian as

Hn = −D
n∑
α=1

∇2
z − wζ0

n∑
α=1

sgn(zα)

− 1
2
w2∆0

n∑
α,β=1

sgn(zα)sgn(zβ)− 2wχ0ζ0∆0σ

×
n∑

α,β=1

sgn(zα) |ψ(zβ)|2 − 2χ2
0ζ

2
0∆0σ

2

×
n∑

α,β=1

|ψ(zα)|2 |ψ(zβ)|2 − (χ0∆
2
0 + ζ2

0)χ0σ

×
n∑
α=1

|ψ(zα)|2 + λσ2
n∑
α=1

|ψ(zα)|4 , (14)

where we have introduced the notation D = a2/2d, and
σ = (χ2

0∆
2
0/a

d + χ0ζ
2
0)/(2λ). Due to the preaveraging the

problem becomes effectively one dimensional.
The investigation of the adsorption of a random het-

eropolymer chain is now equivalent to the study of the
ground state of the Hamiltonian Hn given by equa-
tion (14). In treating the case without the self-interactions
(the case which is obtained from equation (14) by putting
χ0 = 0 and λ = 0) Stepanow et al. [5] applied a novel
variational principle for the Green’s function associated
with the Hamiltonian Hn. The latter generalizes the well-
known Rayleigh-Ritz method in Quantum Mechanics for
nonstationary states. The variational principle for the
Green’s function can be outlined as follows [5]. The start
point is the Dyson equation for the Green’s function G

0 = −G−1 +G−1
0 +Hint

n , (15)

which is considered as a stationarity condition
δF (G)/δG = 0 of a functional F (G), which is found in a
straightforward way as

F (G) = −tr ln(G) + trG−1
0 G+ trHint

n G, (16)

where the bare Green’s function is defined as G−1
0 =

ω + H0, with H0 being the unperturbed part of the
Hamiltonian, Hint

n is the interaction part of the Hamil-
tonian, and ω is Laplace conjugate to the chain’s length
N . The functional F (G) given by equation (16) is the
particular case of the generating functional of the 2nd
Legendre transform in Quantum Field Theory and Sta-
tistical Physics [35–37]. Notice that without preaverag-
ing of ρ(rα) according to equations (11, 12) the problem
under consideration does not reduce to a quantum me-
chanical problem and instead of (16) we have to use the
extremum principle associated with the second Legendre
transform [36,37]. Assuming the ground state dominance
we choose the n-replica trial Green’s function as

G(k1,k2; z, z′; t) =
n∏
α=1

exp(−εkt)ψ(k1,k2; zα)ψ(k1,k2; z′α),

(17)

where the trial wave function is used as

ψ(k1,k2; zα) =

√
2k1k2

k1 + k2

(
e−k1zαϑ(zα) + ek2zαϑ(−zα)

)
.

(18)

Notice that the energy εk = −Dk2
2 is negative, and is a

function of k2. Computing the terms in (16) by using (17)
and (18) gives the extremum functional as

F (k1,k2) = ln(ω + nεk) +
n(Dk1k2 − εk)

ω + nεk

− nwζ0

ω + nεk

(
k2 − k1

k1 + k2

)
−n

2
∆0w

2

ω + nεk
− n(n− 1)

2
∆0w

2

ω + nεk

(
k2 − k1

k1 + k2

)2

−nχ0σ(χ0∆
2
0 + ζ2

0)
ω + nεk

k1k2

k1 + k2

−n
2wχ0ζ0∆0σ

ω + nεk

2k1k2

k1 + k2

(
k2 − k1

k1 + k2

)
− (n+ 3n2)

12
2ζ2

0χ
2
0∆0σ

2

ω + nεk

(
2k1k2

k1 + k2

)2

+
1
3

nλσ2

ω + nεk

(
2k1k2

k1 + k2

)2

· (19)

The stationarity conditions

∂F/∂k1 = ∂F/∂k2 = 0, (20)

give in the limit n = 0 the following equations

3k3
1 + 9k2

1k2 + 9k1k
2
2 + 3k3

2 + 6ζ(k1 + k2) + 6∆(k1 − k2)

−3χ2∆2σk2(k1 +k2)−3χζ2σk2(k1 +k2)−4ζ2χ2∆σ2k1k
2
2

+ 8λσ2k1k
2
2 = 0, (21)

3k3
1k2 + 9k2

1k
2
2 + 9k1k

3
2 + 3k4

2 + 3ζ(k2
1 − k2

2)− 6∆k1k2

−3χ2∆2σk1k2(k1 + k2)− 3χζ2σk1k2(k1 + k2)

−(2ζ2σ +∆)χ2∆σk2
1k

2
2 + 4λσ2k2

1k
2
2 = 0, (22)

where we have introduced new quantities ∆ = ∆0w
2, ζ =

ζ0w, χ = χ0/w
2 and have put D = 1. The solution of

this system of equations gives us the localization lengths
ξ1 = 1/k1 and ξ2 = 1/k2, which describe the localization
of the random heteropolymer onto the interface.

3 Results

The localization of a random heteropolymer was stud-
ied in [5] (see also [6–15]) without taking into account
the self-interactions between the monomers. It was found
in [5] that the localization-delocalization transition occurs
at the temperature Tc = 2∆0

3ζ0
, where the parameter k1 be-

comes zero and thence the localization length ξ1 = 1/k1
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4

T

k , k1          2

1 2

Fig. 1. Dependence of k1 (solid line) and k2 (dashed line)
as functions of the temperature at ζ0 = 1, ∆0 = 1, w1 = 1,
λ1 = 1. Curves 1, 2 correspond to χ1 = 0.1; 2, respectively.

becomes infinite. The value of Tc coincides exactly with
that found in [9] by using a different method. The con-
dition k1 = 0 means that the heteropolymer delocalizes
in the right half-plane (z > 0). This is in agreement with
equation (1) according to which for χ > 0 the charges
with ζ(s) > 0 prefer to be in the right half-plane. For the
ideal heteropolymer (χ0 = 0, λ = 0) we have recovered
the results of [5] with values k0

1 =
√

6∆/9 and k0
2 = 2k0

1

for statistically symmetric heteropolymer, ζ0 = 0. The
asymmetry of the ground state for ζ0 = 0 is the conse-
quence of the breaking of the symmetry of the distribu-
tion function of the monomer sequences P ({ζ(s)}) due to
the interface [5]. Besides the conformations with average
charge being zero, there are also conformations contain-
ing a charge excess. It is clear that among the charge se-
quences ζ(s) which are favorable for localization (negative
charge excess −δζ), there are also charge sequences (pos-
itive charge excess δζ) disfavoring the localization. Ac-
cording to the Gaussian distribution of charge sequences
the charge excess for a piece of the polymer containing
N monomers is of order

√
N . In studying the localiza-

tion of the heteropolymer with ζ0 > 0 the copies of the
heteropolymer with excess of charge sequences, which is
favorable for adsorption, are present in the solution with
higher amount than the copies with the opposite charge
excess.

Unfortunately, the equations (21, 22) cannot be ana-
lyzed analytically, so that we solve them numerically. First
we have examined the influence of the random monomer-
monomer interaction on the localization lengths. In Fig-
ure 1 we show the dependence of k1 and k2 as a func-
tions of the temperature at fixed λ1 (λ = λ1/T ), w1

(w = w1/T ), and for two different values of the strength of
random self-interactions χ1 (χ0 = χ1/T ). Together with
Figure 2 it shows that the random self-interactions shift
the critical temperature to higher values i.e. they favor
the localization.

� � � �

�

�

�

Tc

D S

L S

χ
1

Fig. 2. The critical temperature Tc vs. χ1 (values of all param-
eters are the same as in Fig. 1). LS and DS is the abbreviation
for localized and delocalized state.

Notice that at the transition point (k1 = 0, the delo-
calization occurs in the right-half plane) the penetration
length of the polymer in the left half-plane 1/k2 is not
zero. According to the ansatz εk = −Dk2

2 the binding en-
ergy at the transition differs from zero too. This occurs
already in the case λ = 0 and χ0 considered in [5] and can
be explained as follows. In the case of adsorption onto an
asymmetric interface, where the adsorption is due to the
contact interaction with the interface, the adsorption en-
ergy as well as the penetration length of the polymer into
the repulsive half-plane are zero at the transition [29]. This
is the generic case for localization of quantum particles in
potential wells [30]. However, in the present problem there
is no direct interaction with the interface. The adsorption
is the consequence of a collective organization of the het-
eropolymer on both sides of the interface [1], so that the
heteropolymer penetrates the both parts of the interface
and due to this the nonzero value of k2 at the transition
is expected. The penetration of the heteropolymer into
the left half-plane z < 0 will be accompanied by the en-
ergy win, so that also the adsorption energy is expected
not to be zero at the transition. The free energy in this
approximation is simply the one-replica binding energy.
Thus, in agreement with [5] the adsorption of the het-
eropolymer onto an interface is the first-order transition.
Figure 3 shows the dependence of k1 and k2 on the tem-
perature at fixed χ1 for two different values of the strength
of the ternary interactions λ1. Figure 4 gives the critical
temperature as a function of λ1. Figures 3, 4 show that
as expected the repulsive ternary interactions disfavor the
localization of the heteropolymer.

Figure 5 shows the dependence of k1 and k2 as a
function of the asymmetry parameter ζ0 for two differ-
ent values of χ1. For larger value of χ1 the heteropolymer
is always localized. At small ζ0 the inverse localization
length k1 first decreases in agreement with the expecta-
tion that the increase of the asymmetry parameter drives
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� � �

�

�
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k  , k1          2

T

2 1

Fig. 3. Dependence of k1 (solid line) and k2 (dashed line)
as functions of the temperature at ζ0 = 1, ∆0 = 1, w1 = 1,
χ1 = 1. Curves 1, 2 correspond to λ1 = 0.2;1, respectively.

��� ��� ��� ���

�

�

�

Tc

D S

L S

λ1

Fig. 4. The critical temperature Tc vs. λ1 (values of all param-
eters are the same as in Fig. 3). LS and DS is the abbreviation
for localized and delocalized state.

the heteropolymer to the delocalization transition. How-
ever, at higher values of the asymmetry k1 and k2 begin
to increase, so that the heteropolymer will be more and
more squeezed at the interface. This unusual behaviour
can be explained due to the interplay between the ran-
dom self-interactions and the selectivity of the solvents on
both sides of the interface. The random self-interactions
being attractive for the monomers of the same kind results
in a decrease of the size of the blobs on both sides of the
interface. This tendency to collapse, which is due to the
attractive interactions between the monomers of the same
kind, is accompanied by the tendency to a microphase
separation [31] between the monomers of different kind.
The repulsive interaction between the monomers of dif-
ferent kind will reinforce the microphase separation. The
decrease of the size of the blobs, and the reorganization of
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Fig. 5. Dependence of k1 (solid line) and k2 (dashed line) as
functions of the asymmetry parameter ζ0 at ∆0 = 1, λ1 =
0.01, T = 2 for two values of χ1 (curves 1, 2 correspond to
χ1 = 0.3 and 1, respectively).

the monomers within the blobs has the consequence that
the blobs will win energy if the A-rich part of the blob
will be in A′-solvent and its B-rich part will be in the
B′-solvent, with the obvious consequence that the contacts
of the blobs with the interface will be reinforced, which will
favor the localization of the heteropolymer. The random
self-interactions influence to great extent the larger blobs,
i.e. the blobs which are on the right side of the interface,
while similar to the case of the excluded volume interac-
tions the effect of the interaction is proportional to χ

√
N

with N being the number of monomers in the blob. The
number of monomers in the blobs on the right side of the
interface is expected to increase with the asymmetry pa-
rameter ζ0. Due to this the tendency to collapse (which
is expected to be prevented by ternary interactions) and
the reorganization of the monomers in blobs (micro-phase
separation) is more pronounced for blobs in the right
half-plane. Thus, the interplay of the random monomer-
monomer interactions and the selectivity of the solvent
favors the localization of the heteropolymer. According to
the expectation that this reorganization will be more pro-
nounced for the blobs on the right side of the interface
will explain that for even larger values of ζ0 the inverse
lengths k1 and k2 change the places: k1 becomes larger
than k2. This marks the strong localization of the het-
eropolymer, which is due to the random self-interactions.
The effect of the asymmetry on the binary random interac-
tions can be seen in the effective replica Hamiltonian (14),
where ζ0 appears in combination of the strength of the
binary random interactions χ0, i.e. it enforces the effect
of random self-interactions. Notice that within the present
method we cannot study directly the reorganization of the
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Fig. 6. Dependence of k1 (solid line) and k2 (dashed line) as
functions of the asymmetry parameter ζ0 at ∆0 = 1, χ1 = 0.3,
T = 2 for two values of λ1 (curves 1, 2 correspond to λ1 =
0.0001 and 0.01, respectively).

heteropolymer at the interface, but see its consequences
for adsorption. The strong increase of k1 and k2 means
that the heteropolymer practically lies on the interface.
The increase of the localization energy, which is propor-
tional to k2

2, gives an additional support of this picture. It
is intuitively clear that the repulsive ternary interactions
cannot prevent this regime of the strong localization of
the heteropolymer.

For smaller χ1 > 0 or high T (see Fig. 5, curve 1),
the increase of k1 and k2 for large enough ζ0 shown in
curve 2 of Figure 5 results in a rather more striking be-
haviour. In the range ζ0 ≤ ζ1

0 the increase of the asym-
metry drives the heteropolymer towards delocalization
transition, which occurs at ζ1

0. We expect that in this
regime the self-organization of the heteropolymer is not
advanced, since the effect of the random interactions is
weak. For intermediate values of the asymmetry parame-
ter, ζ1

0 < ζ0 < ζ2
0, with ζ1

0 and ζ2
0 depending on χ, there is

the window where the polymer is delocalized. For ζ0 > ζ2
0

the polymer localizes again, i.e. there is a reentrant lo-
calization transition of the heteropolymer, the behaviour,
which is expected to have the same reason as the be-
haviour of the curve 2 of Figure 5 for large asymmetry
parameter ζ0, and is expected to be due to the nontrivial
self-organization of the heteropolymer at the interface.

Figure 6 shows the dependence of k1 and k2 on the
asymmetry parameter ζ0 for fixed χ1 and for two different
values of λ1. The behaviour is qualitatively the same as in
Figure 5. The increase of λ1 drives the heteropolymer to-
wards delocalization, and favors the reentrant transition.

The analysis of equations (21–22) at ζ1
0, ζ2

0, and at
k1 = 0, where (21–22) considerably simplify, yields that

for small χ and ∆, and large λ the asymmetry parameter
ζ2

0 increases, when χ and ∆ decreases, and increases with
increase of λ. This in agreement with the above consid-
eration. Thus, as expected the decrease of ∆ drives ζ2

0 to
infinity.

Notice that the behaviour shown in Figure 5 is limited
to the model of Gaussian distributed charge sequences we
are considering here. The mapping of this model to the
model with bimodal distributed charge sequences, which
is more preferable from the experimental point of view,
demands to restrict the asymmetry parameter by a max-
imal value ζmax

0 being of order of magnitude comparable
with the width

√
∆0 of the distribution function of charge

sequences [26]. Thus, the experimentally relevant range of
the asymmetry parameter is restricted to ζ0 < ζmax

0 , so
that the reentrant transition we have predicted is expected
to be of experimental interest for ζ2

0 < ζmax
0 . Although at

ζ0 = ζmax
0 the heteropolymer is on average homopolymer,

due to the difference of the variance ∆0 from zero the typ-
ical polymer is still heterogeneous. Notice that both the
reentrant transition and the strong increase of k1 and k2

occur at relatively small ζ0.
Although the above results are derived by using

approximations, primarily the preaveraging procedure,
which is the key point permitting us to reduce the lo-
calization with random-self interactions to a quantum
mechanical problem, we expect that because these predic-
tions are supported by qualitative arguments, the com-
plex behaviour of the random heteropolymer at the in-
terface revealed in the present work is not the artifact of
approximations.

4 Conclusion

We have considered the adsorption of a random het-
eropolymer onto an interface within the model by Garel
et al. [1] by taking into account the random binary self-
interactions and ternary repulsive interactions between
the monomers. The use of a preaveraging procedure within
the replica method permits to map the present problem to
a localization problem associated with a quantum mechan-
ical Hamiltonian. To find the binding state of the latter we
use the variational principle based on the 2nd Legendre
transform. We have found that random self-interactions
favor the localization of the random heteropolymer driv-
ing the delocalization transition to larger values of asym-
metry, while on the contrary the ternary repulsive inter-
actions disfavor the localization. The localization of the
heteropolymer with random self-interactions shows a com-
plex behaviour consisting in a reentrant localization tran-
sition at moderate values of the asymmetry parameter ζ0

in the appropriate range of values of parameters of the
model.
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